Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Comparable contributions of structural-functional constraints and expression level to the rate of protein sequence evolution.

Identifieur interne : 003966 ( Main/Exploration ); précédent : 003965; suivant : 003967

Comparable contributions of structural-functional constraints and expression level to the rate of protein sequence evolution.

Auteurs : Maxim Y. Wolf [États-Unis] ; Yuri I. Wolf ; Eugene V. Koonin

Source :

RBID : pubmed:18840284

Descripteurs français

English descriptors

Abstract

BACKGROUND

Proteins show a broad range of evolutionary rates. Understanding the factors that are responsible for the characteristic rate of evolution of a given protein arguably is one of the major goals of evolutionary biology. A long-standing general assumption used to be that the evolution rate is, primarily, determined by the specific functional constraints that affect the given protein. These constrains were traditionally thought to depend both on the specific features of the protein's structure and its biological role. The advent of systems biology brought about new types of data, such as expression level and protein-protein interactions, and unexpectedly, a variety of correlations between protein evolution rate and these variables have been observed. The strongest connections by far were repeatedly seen between protein sequence evolution rate and the expression level of the respective gene. It has been hypothesized that this link is due to the selection for the robustness of the protein structure to mistranslation-induced misfolding that is particularly important for highly expressed proteins and is the dominant determinant of the sequence evolution rate.

RESULTS

This work is an attempt to assess the relative contributions of protein domain structure and function, on the one hand, and expression level on the other hand, to the rate of sequence evolution. To this end, we performed a genome-wide analysis of the effect of the fusion of a pair of domains in multidomain proteins on the difference in the domain-specific evolutionary rates. The mistranslation-induced misfolding hypothesis would predict that, within multidomain proteins, fused domains, on average, should evolve at substantially closer rates than the same domains in different proteins because, within a mutlidomain protein, all domains are translated at the same rate. We performed a comprehensive comparison of the evolutionary rates of mammalian and plant protein domains that are either joined in multidomain proteins or contained in distinct proteins. Substantial homogenization of evolutionary rates in multidomain proteins was, indeed, observed in both animals and plants, although highly significant differences between domain-specific rates remained. The contributions of the translation rate, as determined by the effect of the fusion of a pair of domains within a multidomain protein, and intrinsic, domain-specific structural-functional constraints appear to be comparable in magnitude.

CONCLUSION

Fusion of domains in a multidomain protein results in substantial homogenization of the domain-specific evolutionary rates but significant differences between domain-specific evolution rates remain. Thus, the rate of translation and intrinsic structural-functional constraints both exert sizable and comparable effects on sequence evolution.


DOI: 10.1186/1745-6150-3-40
PubMed: 18840284
PubMed Central: PMC2572155


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Comparable contributions of structural-functional constraints and expression level to the rate of protein sequence evolution.</title>
<author>
<name sortKey="Wolf, Maxim Y" sort="Wolf, Maxim Y" uniqKey="Wolf M" first="Maxim Y" last="Wolf">Maxim Y. Wolf</name>
<affiliation wicri:level="2">
<nlm:affiliation>National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA. nskwolf@gmail.com</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894</wicri:regionArea>
<placeName>
<region type="state">Maryland</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Wolf, Yuri I" sort="Wolf, Yuri I" uniqKey="Wolf Y" first="Yuri I" last="Wolf">Yuri I. Wolf</name>
</author>
<author>
<name sortKey="Koonin, Eugene V" sort="Koonin, Eugene V" uniqKey="Koonin E" first="Eugene V" last="Koonin">Eugene V. Koonin</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2008">2008</date>
<idno type="RBID">pubmed:18840284</idno>
<idno type="pmid">18840284</idno>
<idno type="doi">10.1186/1745-6150-3-40</idno>
<idno type="pmc">PMC2572155</idno>
<idno type="wicri:Area/Main/Corpus">003781</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">003781</idno>
<idno type="wicri:Area/Main/Curation">003781</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">003781</idno>
<idno type="wicri:Area/Main/Exploration">003781</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Comparable contributions of structural-functional constraints and expression level to the rate of protein sequence evolution.</title>
<author>
<name sortKey="Wolf, Maxim Y" sort="Wolf, Maxim Y" uniqKey="Wolf M" first="Maxim Y" last="Wolf">Maxim Y. Wolf</name>
<affiliation wicri:level="2">
<nlm:affiliation>National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA. nskwolf@gmail.com</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894</wicri:regionArea>
<placeName>
<region type="state">Maryland</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Wolf, Yuri I" sort="Wolf, Yuri I" uniqKey="Wolf Y" first="Yuri I" last="Wolf">Yuri I. Wolf</name>
</author>
<author>
<name sortKey="Koonin, Eugene V" sort="Koonin, Eugene V" uniqKey="Koonin E" first="Eugene V" last="Koonin">Eugene V. Koonin</name>
</author>
</analytic>
<series>
<title level="j">Biology direct</title>
<idno type="eISSN">1745-6150</idno>
<imprint>
<date when="2008" type="published">2008</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Sequence (genetics)</term>
<term>Amino Acid Sequence (physiology)</term>
<term>Animals (MeSH)</term>
<term>Arabidopsis Proteins (chemistry)</term>
<term>Arabidopsis Proteins (genetics)</term>
<term>Arabidopsis Proteins (physiology)</term>
<term>Evolution, Molecular (MeSH)</term>
<term>Gene Expression Regulation (physiology)</term>
<term>Humans (MeSH)</term>
<term>Mice (MeSH)</term>
<term>Populus (chemistry)</term>
<term>Populus (genetics)</term>
<term>Populus (physiology)</term>
<term>Protein Structure, Tertiary (genetics)</term>
<term>Proteins (chemistry)</term>
<term>Proteins (genetics)</term>
<term>Proteins (physiology)</term>
<term>Recombinant Fusion Proteins (chemistry)</term>
<term>Recombinant Fusion Proteins (genetics)</term>
<term>Structure-Activity Relationship (MeSH)</term>
<term>Time Factors (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux (MeSH)</term>
<term>Facteurs temps (MeSH)</term>
<term>Humains (MeSH)</term>
<term>Populus (composition chimique)</term>
<term>Populus (génétique)</term>
<term>Populus (physiologie)</term>
<term>Protéines (composition chimique)</term>
<term>Protéines (génétique)</term>
<term>Protéines (physiologie)</term>
<term>Protéines d'Arabidopsis (composition chimique)</term>
<term>Protéines d'Arabidopsis (génétique)</term>
<term>Protéines d'Arabidopsis (physiologie)</term>
<term>Protéines de fusion recombinantes (composition chimique)</term>
<term>Protéines de fusion recombinantes (génétique)</term>
<term>Relation structure-activité (MeSH)</term>
<term>Régulation de l'expression des gènes (physiologie)</term>
<term>Souris (MeSH)</term>
<term>Structure tertiaire des protéines (génétique)</term>
<term>Séquence d'acides aminés (génétique)</term>
<term>Séquence d'acides aminés (physiologie)</term>
<term>Évolution moléculaire (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Arabidopsis Proteins</term>
<term>Proteins</term>
<term>Recombinant Fusion Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Populus</term>
<term>Protéines</term>
<term>Protéines d'Arabidopsis</term>
<term>Protéines de fusion recombinantes</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Arabidopsis Proteins</term>
<term>Populus</term>
<term>Protein Structure, Tertiary</term>
<term>Proteins</term>
<term>Recombinant Fusion Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Populus</term>
<term>Protéines</term>
<term>Protéines d'Arabidopsis</term>
<term>Protéines de fusion recombinantes</term>
<term>Structure tertiaire des protéines</term>
<term>Séquence d'acides aminés</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Populus</term>
<term>Protéines</term>
<term>Protéines d'Arabidopsis</term>
<term>Régulation de l'expression des gènes</term>
<term>Séquence d'acides aminés</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Arabidopsis Proteins</term>
<term>Gene Expression Regulation</term>
<term>Populus</term>
<term>Proteins</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Evolution, Molecular</term>
<term>Humans</term>
<term>Mice</term>
<term>Structure-Activity Relationship</term>
<term>Time Factors</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Facteurs temps</term>
<term>Humains</term>
<term>Relation structure-activité</term>
<term>Souris</term>
<term>Évolution moléculaire</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>Proteins show a broad range of evolutionary rates. Understanding the factors that are responsible for the characteristic rate of evolution of a given protein arguably is one of the major goals of evolutionary biology. A long-standing general assumption used to be that the evolution rate is, primarily, determined by the specific functional constraints that affect the given protein. These constrains were traditionally thought to depend both on the specific features of the protein's structure and its biological role. The advent of systems biology brought about new types of data, such as expression level and protein-protein interactions, and unexpectedly, a variety of correlations between protein evolution rate and these variables have been observed. The strongest connections by far were repeatedly seen between protein sequence evolution rate and the expression level of the respective gene. It has been hypothesized that this link is due to the selection for the robustness of the protein structure to mistranslation-induced misfolding that is particularly important for highly expressed proteins and is the dominant determinant of the sequence evolution rate.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RESULTS</b>
</p>
<p>This work is an attempt to assess the relative contributions of protein domain structure and function, on the one hand, and expression level on the other hand, to the rate of sequence evolution. To this end, we performed a genome-wide analysis of the effect of the fusion of a pair of domains in multidomain proteins on the difference in the domain-specific evolutionary rates. The mistranslation-induced misfolding hypothesis would predict that, within multidomain proteins, fused domains, on average, should evolve at substantially closer rates than the same domains in different proteins because, within a mutlidomain protein, all domains are translated at the same rate. We performed a comprehensive comparison of the evolutionary rates of mammalian and plant protein domains that are either joined in multidomain proteins or contained in distinct proteins. Substantial homogenization of evolutionary rates in multidomain proteins was, indeed, observed in both animals and plants, although highly significant differences between domain-specific rates remained. The contributions of the translation rate, as determined by the effect of the fusion of a pair of domains within a multidomain protein, and intrinsic, domain-specific structural-functional constraints appear to be comparable in magnitude.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSION</b>
</p>
<p>Fusion of domains in a multidomain protein results in substantial homogenization of the domain-specific evolutionary rates but significant differences between domain-specific evolution rates remain. Thus, the rate of translation and intrinsic structural-functional constraints both exert sizable and comparable effects on sequence evolution.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">18840284</PMID>
<DateCompleted>
<Year>2009</Year>
<Month>03</Month>
<Day>23</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1745-6150</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>3</Volume>
<PubDate>
<Year>2008</Year>
<Month>Oct</Month>
<Day>07</Day>
</PubDate>
</JournalIssue>
<Title>Biology direct</Title>
<ISOAbbreviation>Biol Direct</ISOAbbreviation>
</Journal>
<ArticleTitle>Comparable contributions of structural-functional constraints and expression level to the rate of protein sequence evolution.</ArticleTitle>
<Pagination>
<MedlinePgn>40</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1186/1745-6150-3-40</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">Proteins show a broad range of evolutionary rates. Understanding the factors that are responsible for the characteristic rate of evolution of a given protein arguably is one of the major goals of evolutionary biology. A long-standing general assumption used to be that the evolution rate is, primarily, determined by the specific functional constraints that affect the given protein. These constrains were traditionally thought to depend both on the specific features of the protein's structure and its biological role. The advent of systems biology brought about new types of data, such as expression level and protein-protein interactions, and unexpectedly, a variety of correlations between protein evolution rate and these variables have been observed. The strongest connections by far were repeatedly seen between protein sequence evolution rate and the expression level of the respective gene. It has been hypothesized that this link is due to the selection for the robustness of the protein structure to mistranslation-induced misfolding that is particularly important for highly expressed proteins and is the dominant determinant of the sequence evolution rate.</AbstractText>
<AbstractText Label="RESULTS" NlmCategory="RESULTS">This work is an attempt to assess the relative contributions of protein domain structure and function, on the one hand, and expression level on the other hand, to the rate of sequence evolution. To this end, we performed a genome-wide analysis of the effect of the fusion of a pair of domains in multidomain proteins on the difference in the domain-specific evolutionary rates. The mistranslation-induced misfolding hypothesis would predict that, within multidomain proteins, fused domains, on average, should evolve at substantially closer rates than the same domains in different proteins because, within a mutlidomain protein, all domains are translated at the same rate. We performed a comprehensive comparison of the evolutionary rates of mammalian and plant protein domains that are either joined in multidomain proteins or contained in distinct proteins. Substantial homogenization of evolutionary rates in multidomain proteins was, indeed, observed in both animals and plants, although highly significant differences between domain-specific rates remained. The contributions of the translation rate, as determined by the effect of the fusion of a pair of domains within a multidomain protein, and intrinsic, domain-specific structural-functional constraints appear to be comparable in magnitude.</AbstractText>
<AbstractText Label="CONCLUSION" NlmCategory="CONCLUSIONS">Fusion of domains in a multidomain protein results in substantial homogenization of the domain-specific evolutionary rates but significant differences between domain-specific evolution rates remain. Thus, the rate of translation and intrinsic structural-functional constraints both exert sizable and comparable effects on sequence evolution.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Wolf</LastName>
<ForeName>Maxim Y</ForeName>
<Initials>MY</Initials>
<AffiliationInfo>
<Affiliation>National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA. nskwolf@gmail.com</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wolf</LastName>
<ForeName>Yuri I</ForeName>
<Initials>YI</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Koonin</LastName>
<ForeName>Eugene V</ForeName>
<Initials>EV</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<Agency>Intramural NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D003160">Comparative Study</PublicationType>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052060">Research Support, N.I.H., Intramural</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2008</Year>
<Month>10</Month>
<Day>07</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Biol Direct</MedlineTA>
<NlmUniqueID>101258412</NlmUniqueID>
<ISSNLinking>1745-6150</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029681">Arabidopsis Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011506">Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011993">Recombinant Fusion Proteins</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029681" MajorTopicYN="N">Arabidopsis Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019143" MajorTopicYN="Y">Evolution, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005786" MajorTopicYN="N">Gene Expression Regulation</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051379" MajorTopicYN="N">Mice</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017434" MajorTopicYN="N">Protein Structure, Tertiary</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011506" MajorTopicYN="N">Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011993" MajorTopicYN="N">Recombinant Fusion Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013329" MajorTopicYN="N">Structure-Activity Relationship</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013997" MajorTopicYN="N">Time Factors</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2008</Year>
<Month>10</Month>
<Day>01</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2008</Year>
<Month>10</Month>
<Day>07</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2008</Year>
<Month>10</Month>
<Day>9</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2009</Year>
<Month>3</Month>
<Day>24</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2008</Year>
<Month>10</Month>
<Day>9</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">18840284</ArticleId>
<ArticleId IdType="pii">1745-6150-3-40</ArticleId>
<ArticleId IdType="doi">10.1186/1745-6150-3-40</ArticleId>
<ArticleId IdType="pmc">PMC2572155</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Mol Evol. 2008 Apr;66(4):395-404</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18379715</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2008 Mar;18(3):449-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18230802</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Evol Biol. 2003 May 23;3:11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12769820</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2004 Jan 1;32(Database issue):D189-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14681391</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2003 Dec 18;426(6968):895-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14685250</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2004;5(2):R7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14759257</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2004;32(5):1792-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15034147</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Evol Biol. 2004 May 27;4:13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15165289</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2004 Nov;21(11):2058-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15282333</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Biochem. 1977;46:573-639</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">409339</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1995 Apr 7;247(4):536-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7723011</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 1996;266:418-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8743697</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1997 Sep 1;25(17):3389-402</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9254694</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1997 Oct 24;278(5338):631-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9381173</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 1999 Jul 15;9(14):747-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10421576</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2005 Apr;37(4):351-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15750592</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2005 May;22(5):1345-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15746013</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Apr 12;102(15):5483-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15800036</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biotechnol. 2005 Oct;23(10):485-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16054255</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS J. 2005 Oct;272(19):5064-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16176277</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Oct 4;102(40):14338-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16176987</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2000 Jul;10(7):991-1000</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10899148</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2001 May 3;411(6833):41-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11333967</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2001 Jun 28;411(6841):1046-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11429604</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2001 Jun;158(2):927-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11430355</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2002 Apr 26;296(5568):750-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11976460</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2002 Jun;12(6):962-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12045149</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Genet. 2003 Mar;19(3):124-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12615003</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phys Rev Lett. 2003 May 30;90(21):218101</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12786593</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2003 Oct;13(10):2229-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14525925</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2006 Feb;23(2):327-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16237209</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Jan 10;103(2):311-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16384916</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2006 May;7(5):337-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16619049</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2006 May;173(1):473-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16489231</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Biol Sci. 2006 Jun 22;273(1593):1507-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16777745</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2006;7(5):R39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16684370</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Genet. 2006 Jul;22(7):354-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16697070</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2006 Sep;23(9):1751-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16782762</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Biotechnol. 2006 Oct;17(5):481-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16962765</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>RNA. 2007 Jan;13(1):87-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17095544</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2007;58:267-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17222076</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2008 Jan;36(Database issue):D419-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18000004</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2008 Jul 25;134(2):341-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18662548</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Maryland</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Koonin, Eugene V" sort="Koonin, Eugene V" uniqKey="Koonin E" first="Eugene V" last="Koonin">Eugene V. Koonin</name>
<name sortKey="Wolf, Yuri I" sort="Wolf, Yuri I" uniqKey="Wolf Y" first="Yuri I" last="Wolf">Yuri I. Wolf</name>
</noCountry>
<country name="États-Unis">
<region name="Maryland">
<name sortKey="Wolf, Maxim Y" sort="Wolf, Maxim Y" uniqKey="Wolf M" first="Maxim Y" last="Wolf">Maxim Y. Wolf</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003966 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 003966 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:18840284
   |texte=   Comparable contributions of structural-functional constraints and expression level to the rate of protein sequence evolution.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:18840284" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020